
 Abstract—A good security practice in web servers is to
de-activate services when not needed in order to reduce the so-called
attack surface. For this purpose, port-knock software has been
developed; port-knock software hides a specific port (in our case, the
SSH port) until a specific port sequence happens. A port-knock
software for Linux servers is knockd. A knockd server listens to all
traffic on an Ethernet interface, looking for special knock sequences of
port-hits. This paper proposes an advanced port-knocking mechanism
based on a Pseudo-Random Number Generator and a Chaotic Random
Number Generator which produces proper pseudo-random knock
sequences. The proposed mechanism produces different sequences
each time and is highly parameterizable.

Keywords—Hénon map, knockd, knock sequences,
pseudo-random number generator, port-knocking.

I. INTRODUCTION
popular protocol for connecting to servers remotely is
Secure Shell, or SSH. SSH is a cryptographic network

protocol operating at the application layer to allow remote login
and other network services to operate securely over an
unsecured channel such as the one provided by the public
Internet [1], [2]. A good security practice is to de-activate
services when not needed in order to reduce the so-called attack
surface. For this purpose, port-knock software has been
developed; port-knock software hides a specific port (here, the
SSH port) until a specific port sequence happens. A popular
port-knock software for Linux servers is knockd [3]. A knockd
server listens to all traffic on an Ethernet interface, looking for
special "knock" sequences of port-hits until a specific sequence
appears. A client produces these port-hits by sending TCP and/
or UDP packets to specific ports on the server. These ports need
not be open; since knockd listens at the link-layer level, it sees
all traffic, even that destined for a closed port. When the server
detects a specific sequence of port-hits, it runs a command
defined in knockd configuration file, in order to open up the
SSH port (typically, no. 22) in a firewall for quick access [4],
[5]. In knockd.conf the user can also specify a timeout interval
(after which the SSH port will automatically close), as well as, a
sequence of port-hits for closing and hiding the port again. For
detailed information about the iptables firewall configuration
the reader is referred to the bibliography [4], [6]. Figure 1
demonstrates an example of a port-knocking sequence using
TCP and UDP.
If the knock sequence is invariant, sniffing may uncover the

secret sequence [6]; hence, the security of this scheme is low. A
better way is to use a pseudo-random number generator (PRNG)
to produce a varying port sequence [7]. However, the produced

 A. Andreatos is with the Div. of Computer Engineering & Information
Science, Hellenic Air Force Academy, Dekeleia Air Force Base, Dekeleia,
Attica, Greece (e-mail: aandreatos@hafa.haf.gr, aandreatos@gmail.com).

sequence will be the same each time the system re-starts;
another possible weakness is that if the generator has a small
period, the pseudo-random sequence may be revealed, hence
the system is not safe enough. In order to solve this problem, a
powerful PRNG could be used.

13821:tcp, 7803:udp, 19552:tcp, 35813:udp, 54926:udp

Fig. 1 Example port-knocking sequence

This paper proposes an advanced port-knocking mechanism
based on two totally uncorrelated PRNGs, which produces
different sequences each time. The proposed mechanism meets
the following requirements:
a) It generates a series of pseudo-random port numbers

and/or protocols (TCP or UDP) and writes them in a special file;
the produced pseudo-random is different in each run because it
uses a function of the system time as a seed;
b) The produced port numbers fall in the upper port range

(e.g., 3000-65000) and the range limits may be configured by
the user;
c) The same algorithm runs at both the client and the server;
d) It modifies the server's knockd configuration file to get the

secret port-knocking sequence from the above special file;
e) It generates a new port-knocking sequence after each SSH

connection at the client and the server.
The proposed mechanism has been simulated using a server

installed on a virtual machine.
An additional security action would be the use a higher port

number for the SSH port instead of the default one (22).

II. THE PRN GENERATORS

In order to produce the port-knocking sequence we need two
things: a) a series of random but valid port numbers (i.e., from
1024 to 65535) and a random series of protocols (either TCP or
UDP) of the same length.
For best results we should use a pseudo-random number

generator (PRNG) with good characteristics. Special tests have
been devised for assessing the quality of random and
pseudo-random number sequences [8], [9]. The two random
sequences are totally uncorrelated, thus increasing the level of
security.

A.Python's PRNG
For the port numbers Python's PRNG function has been used.

Python's PRNG functions produce satisfactory results as the
test results indicate (e.g. entropy = 0.99962). Figure 2 presents
a histogram of a PRN sequence consisting of 65536 numbers.

A

Hiding the SSH port via smart Port Knocking
Antonios S. Andreatos

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 28

mailto:aandreatos.hafa@haf.gr
mailto:aandreatos@gmail.com


Fig. 2 A histogram of 65536 pseudo-random numbers

Python code includes a function of current system time as a
seed in the PRNG so that each time it produces a different
sequence. This function takes into account the least significant
digits as well as the decimal digits which change continuously.

B. Hénon chaotic RNG
For the protocols (TCP or UDP) a chaotic RNG based on

Hénon's chaotic map has been used [10], [11].
The Hénon map is produced by the solution of two coupled

first-order differential equations:

x' = 1-ax^2+y
y' = bx

(1)
(2)

where a, b are constant parameters. Typical values are: a = 1.4
and b = 0.3.
For numerical solution, the following set of difference

equations is used:

x(i+1) = y(i) + 1 – ax(i)^2
y(i+1) = bx(i)

(3)
(4)

with initial conditions [x(0), y(0)] = [0, 0].
The set of these two equations was solved using a Python

script. For a=1.4 and b=0.3 the produced (x,y) pairs when
plotted form a characteristic shape shown in Figure 3:

Fig. 3 Hénon's attractor for 20000 pairs

Figure 4 demonstrates the Hénon's variables versus time
produced by the same Python script.

Fig. 4 Hénon's variables for 300 time steps

By sampling the x waveform using a proper threshold we
get a binary vector; this vector is then used to produce the series
of protocols that will be used in the port-knocking sequence.
This binary waveform is quasi uniform, and is used to define
the protocol that will be used in combination with a port
number. Thus, that the probability of a port being TCP or UDP
is about 50%.

Fig. 5 A histogram of the protocol frequency

C. Combining the two sequences
A third Python script reads the two random sequences and

produces a series of port-knocking sequences, containing a
random but reasonable number of (port, protocol) pairs (e.g.,
from three to six). The result is stored in a sequence file.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 29



Fig. 6 Combining the two sequences

An example sequence produced by that script is shown
below (Fig. 7).

11045:tcp,61405:udp,39673:tcp
20583:udp,8382:tcp,1353:udp,1717:tcp,21917:udp
12574:tcp,38441:tcp,7583:udp
42271:udp,49594:tcp,35510:udp,58555:tcp,10900:udp
14954:tcp,53270:tcp,49274:udp,4133:udp,61935:udp
29362:udp,45912:udp,16999:tcp,4574:udp

Fig. 7 Example knockd output of the proposed scheme

D. Transferring the sequence file
How does the server get the knock sequence file? At least

three possible solutions exist.
a) One alternative is to use secure copy (scp) – channel using

cryptography [7].
b) A second alternative is to transfer the file using a

cryptographic protocol such as secure ftp (sftp) [2] or SSHFS
[12], [13].
c) Another alternative is to use the same algorithm (code) in

both the server and the client. In this approach we must ensure
that the two sequences are synchronized. This might not be the
case if a different seed is used in each machine.

III. SIMULATING THE MECHANISM

We have used virtualisation in order to simulate the use of
the proposed mechanism. The client is implemented on a PC
whereas the server is implemented as a virtual machine (VM)
running on that PC using VirtualBox.
The real and the virtual machines are connected on a virtual

LAN. The virtual machine runs Ubuntu 12.04 Server software.
The procedure is as follows (see Fig. 8):
a) The nmap software has been used by the client to discover

the server's open ports and services. Initially, only the HTTP
port (80) is open while the SSH port (22) is closed.
b) knockd runs on the client and produces a secret sequence

of port numbers and protocols.
c) nmap runs again and now we notice that two server ports

are open.

Fig. 8 A secret random knockd sequence opens the SSH port

Now the client can connect to the server using SSH and
perform any administrative actions.
d) After that, the client runs knockd again, making the

server's ssh port to close (Fig. 9).

Fig. 9 A secret knockd sequence closes the SSH port

IV. CONCLUSIONS

In this paper a smart port-knocking application for Linux
servers has been presented. Using knockd in combination with
a smart mechanism consisting of a PRNG and a CRNG we can
increase server security, first because the attack surface is
reduced and second because the port-knocking sequence is
difficult to guess.
The application has been simulated using virtualisation.

Python programming language has been used to produce the
port-knocking sequences.
Two different and totally independent RNGs have been used:

a PRNG based on a Python function produces the port numbers
and a Chaotic RNG based on Hénon's map produces the port
sequence (TCP or UDP). Another Python script combines the
series of random port number and protocol pairs into a file
containing port-knocking sequences of variable length. For
increased security a custom function has been implemented

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 30



which takes system time into account and produces a different
seed each time. In this way we avoid playback attacks.
The proposed system is highly parameterizable for increased

security:
a) The custom function producing the seed of the PRNG is

parameterizable;
b) The port range limits may be configured by the user;
c) By changing the coefficients a and b of the CRNG as well

as the threshold we get different results;
d) The number of knocks is also variable.
Future work plans include the use of powerful PRNGs (such

as Mersenne Twister [14]), True RNGs or different CRNGs
such as those based on Chua's circuit [15], [16].

REFERENCES
[1] RFC 4251, “The Secure Shell (SSH) Protocol Architecture”, Network

Working Group of the IETF, January 2006.
[2] A. S. Andreatos, “SSH Tutorial”, Oct. 2011. Available:

https://www.merlot.org/merlot/viewMaterial.htm?id=593816.
[3] knockd, Linux man page. Available: http://linux.die.net/man/1/knockd.
[4] “How To Use Port Knocking to Hide your SSH Daemon from Attackers

on Ubuntu”. Available:
https://www.digitalocean.com/community/tutorials/how-to-use-port-kno
cking-to-hide-your-ssh-daemon-from-attackers-on-ubuntu.

[5] knockd - a port-knocking server. Available:
http://www.zeroflux.org/projects/knock.

[6] P. Varelas, Port knocking part 1 - “Listen to your own door”. Delta
Hacker magazine, no. 32, pp. 24-32, May 2014 (in Greek).

[7] P. Varelas, Port knocking part 2 - “Let them eavesdrop”. Delta Hacker
magazine, no. 32, pp. 70-78, May 2014 (in Greek).

[8] A. S. Andreatos and A. P. Leros, “A comparison of random number
sequences for image encryption”, in Proc. MMCTSE, Mathematical
Methods & Computational Techniques in Science & Engineering,
Athens, Greece, November 28-30, 2014, pp. 146-151. ISBN:
978-1-61804-256-9.

[9] A. S. Andreatos and A. P. Leros, “Random number sequences
assessment for image encryption”, International Journal of Applied
Mathematics and Informatics (http://naun.org/cms.action?id=10193).
ISSN: 2074-1278. Volume 9, 2015, pp. 14-22. Available:
http://www.naun.org/main/ Upress/ami/2015/a062013-125.pdf.

[10] M. Hénon, “A Two-dimensional Mapping with a Strange Attractor”.
Commun. Mathematical Physics 50, pp. 69-77 (1976), Springer-Verlag.

[11] W. F. H. Al-Shameri, “Dynamical Properties of the HénonMapping”, Int.
Journal of Math. Analysis, vol. 6, 2012, no. 49, pp. 2419-2430.

[12] https://en.wikipedia.org/wiki/SSHFS.
[13] https://github.com/libfuse/sshfs.
[14] Mersenne twister. Available:

https://en.wikipedia.org/wiki/Mersenne_Twister.
[15] A. Leros and A. Andreatos, “A Steganography Telecom System Based

on a Chua Circuit Chaotic Noise Generator”, Chaotic Modeling and
Simulation Journal, January 2013, pp. 199-208.

[16] C. K. Volos and A. S. Andreatos, “Secure Text Encryption Based on
Hardware Chaotic Noise Generator”, Journal of Applied Mathematics
and Bioiformatics, vol. 5, issue 3, 2014, pp. 15-35.
http://www.scienpress.com/Upload/JAMB/Vol%205_3_2.pdf.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 31

https://www.merlot.org/merlot/viewMaterial.htm?id=593816.
http://linux.die.net/man/1/knockd
http://www.zeroflux.org/projects/knock
http://www.naun.org/main/UPress/ami/2015/a062013-125.pdf
https://en.wikipedia.org/wiki/SSHFS
https://github.com/libfuse/sshfs
https://en.wikipedia.org/wiki/Mersenne_Twister
http://www.scienpress.com/Upload/JAMB/Vol 5_3_2.pdf

	 INTRODUCTION
	 THE PRN GENERATORS
	Python's PRNG
	Hénon chaotic RNG
	Combining the two sequences
	Transferring the sequence file

	SIMULATING THE MECHANISM
	 CONCLUSIONS



